The generator matrix

 1  0  0  1  1  1  X  1  1  0  0  X  1  1  1  0  X  0  0  X  0  1  1  1  1  1  1  1  X  0  X  0  X  0  X  0  X  0  1  1  0  1  1  0  1  0  1  1  0  1  X  1  X  X  1  1  1  X  0  X  1  X  X  X  1  1  1
 0  1  0  0  1  1  1  0  X  X  1  1  1  1  X  1  1  X  1  1  X  0  1 X+1  0  0 X+1  1  1  1  1  1  1  1  1  1  1  1  0  X  0 X+1 X+1  1  X  X  X  0  1  1  1  0  1  X  0 X+1 X+1  1  1  X  0  X  1  1 X+1  0  0
 0  0  1  1  1  0  1  X X+1  1  0  1 X+1  0  X  X  1  1  0 X+1  1 X+1  1  0  X X+1  1  X X+1 X+1 X+1  1  1  1  1  1 X+1 X+1  0 X+1  1  1  0  0  X  1 X+1  1  X X+1 X+1 X+1  0  1  X  1 X+1 X+1 X+1  X  1  X  0  X X+1  1  1
 0  0  0  X  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  0  X  X  X  X  0  0  0  0  X  X  0  X  X  0  0  X  X  X  X  X  0  X  0  0  X  0  0  0  X  0  X  X  0  X  0  0  X  0  X  X  X  X  0  0  0
 0  0  0  0  X  0  0  X  X  X  X  X  0  X  0  X  0  0  0  X  X  X  X  X  X  0  0  0  X  0  X  0  0  X  X  0  0  X  0  0  X  X  X  0  X  0  X  0  X  0  0  X  X  X  0  X  X  0  X  X  X  0  0  0  X  0  X
 0  0  0  0  0  X  0  0  0  X  X  X  0  X  0  0  X  X  X  0  0  X  0  0  0  X  0  0  0  X  X  0  X  X  X  X  X  X  0  0  0  X  0  0  X  X  0  X  X  0  X  0  X  X  0  0  X  0  0  0  X  X  X  0  0  0  X

generates a code of length 67 over Z2[X]/(X^2) who�s minimum homogenous weight is 62.

Homogenous weight enumerator: w(x)=1x^0+92x^62+120x^64+101x^66+81x^68+35x^70+23x^72+7x^74+17x^76+11x^78+10x^80+8x^82+2x^84+2x^86+2x^88

The gray image is a linear code over GF(2) with n=134, k=9 and d=62.
This code was found by Heurico 1.16 in 2.15 seconds.